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Abstract
We modify the J-matrix method for scattering to improve its convergence and
reduce the computational cost. Our method applies to the oscillator basis
J-matrix method. We distinguish three regions in the space of wavefunction
coefficients. In the asymptotic region the free-space boundary conditions
hold. In the far interaction region, semi-classical approximations to the
matrix elements reduce the Schrödinger equation to an inhomogeneous three-
term recurrence relation, and in the near-interaction region one has the full
Schrödinger matrix equation. We apply the modified J-matrix method to
scattering off a Yukawa potential. The examples show that the number of
matrix elements that need to be calculated is significantly smaller than that for
the J-matrix method.

PACS numbers: 02.70.−c, 03.65.Nk, 24.10.−i, 31.15.−p

1. Introduction

When the partial wave expansion is used in quantum potential scattering, one solves the
Schrödinger equation with interaction V (r) for positive energy E and angular momentum
l in order to derive the phase shifts δl(E) and determine the cross sections [1, 2]. A
number of methods reduce the calculation of phase shifts to a set of matrix equations by
introducing a square integrable basis [3–5]. In this paper we consider the J-matrix (JM) method,
developed in a series of papers [4, 6, 7], with applications in atomic and molecular physics
[8, 9]. A similar approach, referred to as the algebraic method by its authors, was developed in
nuclear physics [10–13] with applications to many-particle scattering and in particular cluster
systems [14–16].

As with any basis expansion method, convergence in terms of the size of the basis is
an essential aspect of the application of the method. Several approaches were suggested to
improve the convergence of the J-matrix method results [4, 14, 17]. All these approaches
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are formulated on top of the J-matrix calculation, and thus require the computational cost of
calculating the Hamiltonian matrix to a certain size.

We introduce modifications to the J-matrix method that significantly improve the
convergence while reducing the size of the basis that is required. That is, only small
Hamiltonian matrices are needed to calculate the phase shift. This is significant because usually
the calculation of the interaction matrix elements constitutes most of the computational cost
of the method. Our approach is to use semi-classical approximations for the matrix elements
in the oscillator basis at large radial quantum number. This also simplifies the matrix equations
and effectively reduces them to recurrence relations.

In the J-matrix method a basis must be chosen to express the expansion coefficients of
the scattering functions and the Hamiltonian matrix. The basis has to have some specific
properties for the J-matrix method to be applicable. The harmonic oscillator basis and the
Coulomb basis are the well-known examples. In this paper we address only the oscillator
basis J-matrix method. As it stands our approach cannot be extended to the Coulomb basis.
We limit ourselves to a single-channel scattering problem. The extension to many-channel
calculations is perhaps technically involved but straightforward in principle. We also limit
ourselves to short range potentials in this paper. The extension to long range, Coulombic
potentials is feasible, and is being studied at present.

In the final section of the paper we demonstrate the effectiveness of our approach with a
number of examples. They are based on the Yukawa potential not only because it provides
ample material for comparison, but also because it is a potential where convergence is an
issue. We show that to achieve results at least as good or even better than those of the J-matrix
method, the number of matrix elements needed in the modified J-matrix (MJM) method is at
least an order of magnitude smaller. This implies a significant and worthwhile decrease in the
size of the computations required to perform J-matrix scattering calculations.

2. The J-matrix method

A Schrödinger equation with a spherically symmetric, non-Coulombic potential,{
− h̄2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2

]
+ V (r) − E

}
ψl(r) = 0 (1)

must have a solution that is matched asymptotically with the free-space Bessel and Neumann
functions

ψl(r → ∞) →
√

2

π
jl(kr) − tan δl(k)

√
2

π
nl(kr). (2)

This match of a solution in the interaction region, where the effect of the potential is felt,
with the asymptotic reference states determines the phase shift at momentum k =

√
2mE/h̄2

corresponding to energy E. We use the traditional spherical Bessel and spherical Neumann
function definitions [2, 18] with the delta-function normalization convention.

Many methods, such as the R-matrix method and most variational methods [3, 19], solve
(1) by assuming that ψl can be expressed as

ψl(r) = ψI
l + ψB

l (kr) − tan δl(k)ψN
l (kr). (3)

The component of the solution in the interaction region is expressed by an L2 basis set
expansion truncated at some large n

ψI
l (r) =

∑
n

cI
nlφnl ψI

l (r → ∞) → 0 (4)
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while the asymptotic behaviour is built into the solution through the Bessel and Neumann
terms

ψB
l (r → ∞) →

√
2

π
jl(kr) ψN

l (r → ∞) →
√

2

π
nl(kr). (5)

The latter is regularized to remove the singular behaviour at the origin. This may be done
with a straightforward cut-off or with more sophisticated procedures. The ansatz leads to an
algebraic problem for the coefficients cnl , involving ‘bound–bound’, ‘bound–free’ and ‘free–
free’ matrix elements of the Hamiltonian. The calculation of these matrix elements constitutes
the bulk of the computational effort.

The same approach can be used when the problem is expressed in basis states, in our case
the radial oscillator eigenstates. The wavefunctions for these states, with oscillator length
parameter b, are given by

φnl(r) = (−1)nNnl

( r

b

)l

Ll+1/2
n

(( r

b

)2
)

exp

{
−1

2

( r

b

)2
}

(6)
Nnl = b−3/2

√
2n!/�(n + l + 3/2)

with L
l+1/2
n the Laguerre polynomial, and Nnl the normalization coefficient.

The Schrödinger equation turns into a matrix equation
∞∑

m=0

〈φnl|T + V − E|φml〉cml = 0 (7)

with a (non-square-summable) solution (cnl)n representing the (non-square-integrable) ψl .
The coefficients must satisfy the condition, equivalent to (2),

cn→∞,l → aB
nl − tan δl(k)aN

nl . (8)

The
(
aB

nl

)
n

are the basis coefficients of the Bessel free-space solution and solve the equation

∞∑
m=0

〈φnl|T − E|φml〉aB
ml = 0. (9)

The T operator is tridiagonal in the oscillator basis, so this equation is in effect a three-term
recurrence relation. It can be solved explicitly [4, 7, 20] and one finds

aB
nl(k, b) = Nnlb

3/2(kb)l exp

(
−1

2
(kb)2

)
Ll+1/2

n ((kb)2)

= 2

Nnl

b3/2

�
(
l + 3

2

) (kb)l exp

(
− (kb)2

2

)
1F1

(
−n, l +

3

2
; (kb)2

)
→ b

√
2Rnlj (kRnl) for n → ∞ (10)

where the 1F1 stands for the confluent hypergeometric function [21]. The Rnl = b
√

4n + 2l + 3
in the expression for the asymptotic behaviour are the oscillator turning points.

The Neumann solution cannot be directly expressed in the oscillator basis because of its
singularity at the origin. A regularization procedure is required [7]. Instead of (9), one solves
the equation

∞∑
m=0

〈φnl|T − E|φml〉aN
ml = βδn,0 (11)

subject to the condition that the asymptotic behaviour coincides with the Neumann function.
The effect of the right-hand side is to remove the singularity, but this effect is localized near
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the origin. For large r, and equivalently for large n, the regularized solution coincides with the
Neumann function. The coefficient β fixes the normalization. The regularized solution can
thus serve equally well as a reference state to determine the phase shift in formula (8). Again
this is a three-term recurrence relation that can be solved analytically

aN
nl (k, b) = (−)l+1Nnlb

3
2

�
(−l + 1

2

) (kb)−l−1 exp

(
− (kb)2

2

)
1F1

(
−n − l − 1

2
,−l +

1

2
; (kb)2

)
→ b

√
2Rnlnl(kRnl) for n → ∞. (12)

The Rnl in the asymptotic expression are as defined before. In the following section the
asymptotic behaviour of the coefficients (10) and (12) will be exploited to compute the a
coefficients numerically.

In the J-matrix method one assumes that some large N delimits the interaction region and
that, in equation (7), potential matrix elements with basis states outside of this region may be
neglected. In [4] it is shown that the corresponding scattering state has the structure

cnl =
{

cI
nl + aB

nl − tan δl(k)aN
nl n < N

aB
nl − tan δl(k)aN

nl n � N
(13)

i.e. with a (square integrable) interaction component
(
cI
nl

)
n

of only N coefficients. The
boundary condition is incorporated directly into the solution. The resulting problem consists
of N + 1 equations for n = 0, 1, . . . , N in the unknowns

{
cI

0l , c
I
1,l , . . . , c

I
N−1l , tan δl

}
N−1∑
m=0

〈φnl|T + V − E|φml〉cI
ml − tan δl(E)

(
N+1∑
m=0

〈φnl|T + V − E|φml〉aN
ml

)

= −
N+1∑
m=0

〈φnl|T + V − E|φml〉aB
ml. (14)

Note that in (14) the coefficient in front of the tan δl(E) and in the right-hand side does
not really sum up to N + 1 in terms of the potential matrix elements. Indeed the J-matrix
assumption is that 〈n|V |m〉 = 0 for n or m > N − 1.

Convergence of the phase shift is achieved by extending the interaction region. This
increases the computational cost of the calculation significantly because the number of potential
matrix elements that is required is N(N + 1)/2. Also, the high-order matrix elements are
harder to compute numerically because of the oscillatory behaviour in the high-order basis
states.

3. The modified J-matrix method

We address the convergence problem by returning to the equation

〈φnl|T + V − E|ψl〉 = 0 for all n (15)

for the scattering function ψl and distinguishing three regions in the oscillator representation
space. In each region, the expansion coefficients cnl of the scattering solution fit different
equations. In the near interaction region, 0 � n < Nn, the exact equations apply. In the
far interaction region, Nn � n < Nf , we use semi-classical expressions for the expansion
coefficients and potential matrix elements. And, as before, when n � Nf , the free-space
situation applies. The use of semi-classical approximations for the oscillator matrix elements
in the far interaction region is the new feature of our approach.
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Consider for instance the expansion coefficients for a scattering state

〈φnl|ψl〉 =
∫ ∞

0
r2 dr φnl(r)ψl(r). (16)

At large n, the oscillator state φnl(r) in the integrand is highly oscillatory. The value of
such integrals is determined [22–24] by the contributions near the integration boundaries and
around stationary phase points. In (16) this means that there are contributions near the origin,
where the oscillator function can be approximated by

rφnl ≈ (−1)n

√
2

b

√
2Knl

π
rjl(Knlr) at r ≈ 0 (17)

with Knl = √
4n + 2l + 3/b. There are also contributions around the classical oscillator

turning point Rnl = b
√

4n + 2l + 3, where the oscillator function is approximated by the airy
function

rφnl(r) ≈ 2

b

(
b4

2Rnl

)1/6

Ai((r − Rnl)(2Rnl/b
4)1/3) at r ≈ Rnl. (18)

Beyond the turning point the φnl(r) are negligible and do not contribute to the integral.
These approximations can be derived from semi-classical arguments and a linearization of the
oscillator potential near the origin and the turning point [25]. They can also be found directly
in mathematical texts on the large n behaviour of the Laguerre functions [26]. Inserting the
previous expressions in (16) leads to a two-term formula, for large n,

〈φnl|ψl〉 ≈ b
√

2Rnlψl(Rnl) + (−1)nb−1
√

2Knlψ̃ l(Knl). (19)

The first term samples the wavefunction at the turning point Rnl in coordinate space; the
second samples its Fourier–Bessel transform ψ̃l at the oscillator turning point in momentum
space, Knl . Depending on the support (i.e. the domain in which the function has non-negligible
value) of ψl in coordinate space and in momentum space, one of the terms will dominate.
For a scattering state the momentum support will be a limited area centred on the classical
momentum k. At some n the Knl will lie beyond that momentum range and the second term in
(19) disappears. The expansion coefficients then coincide with the scattering function sampled
at the oscillator turning point.

Similar asymptotic expansion arguments hold for the integrals that determine the potential
matrix elements. When n �= m and n and m are large, the integrand in

〈φnl|V (r)|φml〉 =
∫ ∞

0
dr r2φnl(r)V (r)φml(r) (20)

oscillates very rapidly, because the product φnl(r)φml(r) has n × m nodes. In addition, the
product of the oscillator functions does not have a stationary point. The most important
contribution to the integral comes from the region near r = 0. For this reason it can be
approximated using (17). One finds

〈φnl|V (r)|φml〉 ≈ (−1)n+m

√
KmlKnl

b2

∫ ∞

0
dr r2jl(Knlr)V (r)jl(Kmlr)

≈ (−1)n+mV (Knl,Kml) (21)

where Kml and Knl are the turning points in Fourier space, and V (Knl,Kml) denotes the
integral and its prefactors.

We use these expressions to derive an approximation to (20) in the far interaction region,
i.e. the region of oscillator space with large n, but where one still has non-negligible matrix
elements. We start by applying the asymptotic formula (19) to the potential term in

〈φnl|T + V − E|ψl〉 = 0 (22)
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and find

〈φnl|V ψl〉 ≈ b
√

2Rnl(V ψl)(Rnl) + (−1)nb−1
√

2Knl(Ṽ ψl)(Knl) (23)

where ψl is an unknown scattering function with maximal momentum kmax. The first term is
the product V (r)ψl(r) sampled in the turning point Rnl . The second term is the convolution
product of Fourier–Bessel transforms Ṽ and ψ̃l sampled in Knl .

In view of the arguments of the previous paragraph, further approximations can be made.
The first term in expression (23) can be simplified, for large n, leading to

〈φnl|V ψl〉 ≈ V (Rnl)cnl + (−1)nb−1
√

2Knl(Ṽ ψl)(Knl). (24)

Indeed, ψl is a scattering state and its asymptotic expansion coefficient is determined by the
behaviour of ψl(r) in turning point Rnl in coordinate space. Consequently, we can replace
b
√

2Rnlψl(Rnl) in the first term by cnl . The transform of the product makes the second term
more complicated. Using smoothing and averaging arguments [25], and taking into account
that n is large and ψl is a scattering solution, the second term in (24) can be approximated by

(−1)nb−1
√

2Knl(Ṽ ψl)(Knl) ≈ (−1)nWV (Knl,K0l ) (25)

where W is an unknown depending on ψl only.
When we insert these approximations in (22) we obtain a modified recurrence relation

Tnl,n−1lcn−1l + (Tnl,nl + V (Rnl) − E)cnl + Tnl,n+1lcn+1l = −(−1)nWV (Knl,K0l ) (26)

with a source term. The source term can be constructed using the leading term of the 1/Knl

expansion

V (Knl,K0l ) ∼ K
−l+5/2
nl . (27)

Because of the nature of the boundary conditions for (26), the full solution (see also (28)–(30))
is not sensitive to the precise form of the source term. Therefore in many situations the generic
approximation above is sufficient.

To treat a scattering problem with the modified J-matrix method one must first solve
the modified recurrence relation for the far interaction region and then solve the full matrix
equation in the near interaction region. Equation (26) is a three-term recurrence relation with
source term. A general solution can be found by combination of a solution

(
bB

nl

)
n

of the
homogeneous equation with the Bessel boundary condition,{

Tnl,n−1lb
B
n−1l + (Tnl,nl + V (Rnl) − E)bB

nl + Tnl,n+1lb
B
n+1l = 0

bB
nl → aB

nl for n → ∞ (28)

a solution
(
bN

nl

)
n

of the homogeneous equation with the Neumann boundary condition,{
Tnl,n−1lb

N
n−1l + (Tnl,nl + V (Rnl) − E)bN

nl + Tnl,n+1lb
N
n+1l = 0

bN
nl → aN

nl for n → ∞ (29)

and a solution
(
bS

nl

)
n

of the inhomogeneous equation with the zero boundary condition{
Tnl,n−1lb

S
n−1l + (Tnl,nl + V (Rnl) − E)bS

nl + Tnl,n+1lb
S
n+1l = −(−1)nV (Knl,K0l )

bS
nl → 0 for n → ∞.

(30)

The full scattering state is represented by coefficients

cnl = cI
nl + bB

nl − tan δl(k)bN
nl + WbS

nl (31)

where cI
nl is limited to the near interaction region i.e. is zero when n � Nn . This state satisfies

the equation in the far interaction region and asymptotic regions. The Nn + 2 unknowns of our
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problem are
{
cI

0l , c
I
1,l , . . . , c

I
Nn−1l , tan δl,W

}
. They are determined by inserting (31) into the

Nn + 2 linear equations derived from (22)

Nn−1∑
m=0

〈φnl|T + V − E|φml〉cI
ml − tan δl(E)

( ∞∑
m=0

〈φnl|T + V − E|φml〉bN
ml

)

+ W

( ∞∑
m=0

〈φnl|T + V − E|φml〉bS
ml

)

= −
∞∑

m=0

〈φnl|T + V − E|φml〉bB
ml. (32)

The term in the right-hand side of (32) connected with the bB
ml coefficients is essentially

a bound–free matrix element for a modified Bessel wavefunction

ψB
l =

∞∑
m=0

bB
ml |φml〉. (33)

Equation (28) defining this state expresses that

〈φnl|T + V − E
∣∣ψB

l

〉 ∼= 0 for n large. (34)

However, that does not hold for the small values of n that occur in (32). We need to evaluate the
sum in (32) explicitly. Because the potential matrix elements decrease rapidly when |n − m|
gets large, we can truncate the sum at some M, provided we include at the very least the n = m

term. The same arguments hold for the bN
ml and bS

ml terms. This then leads to the final set of
Nn + 2 equations for n = 0, . . . , Nn + 1:

Nn−1∑
m=0

〈φnl|T + V − E|φml〉cI
ml − tan δl(E)

(
M−1∑
m=0

〈φnl|T + V − E|φml〉bN
ml

)

+ W

(
M−1∑
m=0

〈φnl|T + V − E|φml〉bS
ml

)

= −
M−1∑
m=0

〈φnl|T + V − E|φml〉bB
ml. (35)

To write down this set of equations, we need to calculate the (Nn + 2) × M matrix of
(T + V − E). Assuming that M � Nn + 2, and taking into account the symmetry of the
square (Nn + 2) × (Nn + 2) submatrix, one finds that (Nn + 2)(2M − Nn − 1)/2 potential
matrix elements have to be computed. The application of the method will be discussed in the
following section.

4. Application of the method

In this section we consider the application of the modified J-matrix method, and how it differs
from the J-matrix method. The discussion summarizes the experience gained in calculations
with a number of potentials. The following section will present results of specific examples.

The JM computations consist of the following steps:

(1) Fix an oscillator basis by choosing a width parameter b. It should be of same order of
magnitude as the range of the potential.
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(2) Compute the coefficients aB
nl and aN

nl by solving equations (9) and (11), respectively. Use
the asymptotic forms in (10) and (12), typically at n = 10 000, to seed the backward
recurrence in (9) and (11). This turns out to be more efficient than a direct evaluation of
(10) and (12).

(3) Fix the size N of the interaction region and compute the N(N + 1)/2 potential matrix
elements that occur in (14). In this paper we do this by direct numerical integration. For
high n care must be taken to accommodate the oscillatory nature of the integrand.

(4) Solve equations (14) for the phase shift and derive the cross sections (partial, total,
differential), one is interested in.

The key parameters in this scheme are the oscillator width b and the size of the interaction
region N. One can increase the latter, and repeat steps 3 and 4 of the computation until no
significant change is observed in the phase shift. This convergence is reached at different N
when one uses different b-values. The b-value that achieves convergence for the smallest N is
referred to as the optimum b. We always determine the optimum b for the l = 0 phase shift.

The MJM computations consist of the following steps:

(1) Fix the oscillator basis by choosing a width parameter b as before.
(2) Fix the size Nf of the far interaction region. Compute the coefficients bB

ml, b
N
ml and bS

ml

by solving (28), (29) and (30), respectively. Again this is done by backward recurrence,
seeding with the asymptotic expressions of (10) and (12) at n = 10 000. Starting at
n = Nf the potential terms are included in the recurrence relations.

(3) Fix the size Nn of the near interaction region and the size M of the summation range of
the bound–free matrix elements. Compute the (Nn + 2)(2M −Nn − 1)/2 potential matrix
elements to set up equations (35).

(4) Solve equations (35) for the phase shift and derive the cross sections (partial, total,
differential) of interest.

The parameters in the MJM scheme are b,Nf ,Nn and M. Obviously the Nf is a key
parameter. Calculations with successively larger Nf converge to a phase shift that may still
depend on b,Nn and M. There is, however, a significant difference with the JM scheme.
The computational cost of increasing Nf is negligible. Therefore, in step 2, we include the
potential terms throughout the recurrence in (28), (29) and (30) (in effect Nf = 10 000).
Also, because we can extend the interaction region to such large Nf , the results become less
sensitive to the choice of b,Nn and M. As a rule we try a few b-values, and that for which
convergence is obtained with smallest M is referred to as the optimum b for the MJM scheme.
We always determine the optimum b for the l = 0 phase shift.

The preceding exposition indicates that the relation between JM and MJM is not
straightforward. The semi-classical approximation of oscillator matrix elements in MJM
leads one to view MJM as an approximation to the JM method. However, precisely this
approximation allows us to extend the interaction region in the MJM method way beyond the
limit achievable in the JM, thereby improving on the convergence compared to the JM method.

5. Results

In this section we compare the scattering results, phase shifts and cross sections, for the JM
and MJM methods. Our intention is to gauge the effectiveness of the modifications that we
have introduced.

We have used the Yukawa potential

V (r) = V0
a

r
exp

(
− r

a

)
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Figure 1. Convergence of the MJM l = 0 phase shift for the Yukawa potential (36) of [28] in
terms of the far interaction limit Nf ; all calculations use b = 0.051 fm.

with depth V0 and range a which is well known in quantum physical applications. We
consider two different examples, both from a nuclear physics context. The first potential is
taken from [28] corresponding to the 3S neutron–proton interaction, that was considered to
study variational methods for scattering. It has also been used to study the Born approximation
[29]. The explicit form is{

V0 = −53.8 MeV
a = 1.35 × 10−13 cm = 1.35 × fm.

(36)

The second Yukawa potential was used in [30] to fit phase shifts for nucleon–nucleon scattering
and low-energy parameters, as well as some features of the deuteron. We consider only one
specific case, the 3P2 phase shift, that features very different parameters than those in the
previous potential{

V0 = −14 250.0 MeV
a = 0.263 157 894 fm.

(37)

We also compare the JM and MJM results with the ‘exact’ phase shifts, obtained by the
variable phase approximation of [27]. The latter are indistinguishable from those reported in
[28, 30].

Figure 1 shows the l = 0 MJM phase shifts for the potential [28] at b = 0.051 fm, Nn = 6
and M = 11, for increasing size of the interaction region Nf . The progression towards the
exact phase shift is evident. At Nf = 5000 the phase shift becomes indistinguishable from
the exact.

Figure 1 also shows the JM phase shifts for b = 0.051 fm and N = 100, 150, 200. They
are almost identical to the corresponding MJM phase shifts at Nf = 100, 150, 200. This
indicates that the semi-classical approximation of oscillator matrix elements works well.

In figures 2 to 6 we compare MJM, JM and variable phase results for potential (36).
For the JM method we have used the optimum b = 0.28 fm and usually show results for a
number of N to give an idea of the convergence. For the MJM we have used its optimum b =
0.051 fm and Nn = 6,M = 11 and Nf = 10 000. There is no issue of convergence here: even
the smaller values for Nn and M yield phase shifts that are extremely close to the variable phase



7778 J Broeckhove et al

Figure 2. l = 0 phase shift for the Yukawa potential (36) of [28].

Figure 3. l = 3 phase shift for the Yukawa potential (36) of [28].

results. Figures 2 and 3 present the l = 0 and l = 3 phase shifts respectively, figures 4 and 5
the corresponding partial cross sections. Inspection reveals that for l = 0 the JM is nearing
convergence at N = 200, but this is not the case for l = 3. Potentials that are singular at the
origin have a matrix representation where the off-diagonal matrix elements drop to zero very
slowly. This is the least favourable situation for the truncation to a square matrix. Therefore
a Yukawa potential constitutes a stringent test case for the methods. The figures reveal that
the MJM approach does achieve convergence, even though it requires the computation of only
60 potential matrix elements compared to 20 100 in the N = 200 JM calculation.

Figure 6 shows the differential cross section, calculated with all partial waves with l = 0
up to l = 15, for a selected, representative energy of E = 45.0 MeV taken from [28]. The
figure demonstrates again that the MJM performs well, especially when one takes into account
the number of matrix elements required. Even for small angles, the MJM, with a limited
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Figure 4. l = 0 partial cross section for the Yukawa potential (36) of [28].

Figure 5. l = 3 partial cross section for the Yukawa potential (36) of [28].

dimension of the near interaction region, provides accurate results. The JM results on the
other hand are not yet converged at N = 200.

In figure 7 we again compare exact, MJM and JM results, now for the Yukawa potential
(37). The phase shift is for the partial wave with l = 1 corresponding to the 3P2 case for
which the potential was fitted. The exact, variable phase, results correspond to those of [30].
For the MJM method the optimum b-value is 0.02 fm, and we considered Nn = 10 for the
near interaction, M = 20 for the truncation parameter and Nf = 10 000 for the far interaction
boundary. This amounts to the use of 174 potential matrix elements. For the original JM
approach we limited the calculation to N = 300, i.e. 45 150 potential matrix elements. Due to
the highly singular nature of this potential, convergence is not yet achieved. Figure 7 includes
the results of two different J-matrix calculations with b = 0.037 fm and b = 0.04 fm.
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Figure 6. Differential cross section at 45.0 MeV for the Yukawa potential (36) of [28].

Figure 7. l = 1 phase shift for the Yukawa potential (37) of [30].

6. Conclusions

We have proposed a modified J-matrix method. It introduces three regions in the space of
wavefunction coefficients for the oscillator basis: the asymptotic region where the asymptotic
boundary conditions hold, the far interaction region where semi-classical approximations to
the matrix elements reduce the Schrödinger matrix equations to three-term recurrence relations
including the potential, and the near interaction region where the full matrix equation applies.
Examples demonstrate that the method produces converged phase shifts with potential matrices
that are at least an order of magnitude smaller than those required in the J-matrix method.
They also show the importance of an extended far interaction region for the convergence of
the results.
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